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This TIROS V photograph shows a remarkable large-
scale band of up-slope stratus and frontal cloudiness just
east of the Rocky Mountains. The photograph was
taken on December 11, 1962, at 1832 amT (pass 2512,
camera 1, frame 8) and was received at Point Mugu, Calif.
via direct readout. The center-cross fiducial mark is
located approximately 80 mi. northeast of Albuquerque,
N. Mex. near the crest of the Rockies. North is toward
the top of the picture.

At the time of this photograph a recent surge of Arctic
air had invaded the Great Plains. Midday surface
temperatures over Kansas were in the teens, whereas
over the western portions of Wyoming, Colorado, and
New Mexico they were in the 30’s and low 40’s. The
quasi-stationary front separating the two air masses lay
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north-south along the eastern slope of the Rockies, nearly
coincident with the well-defined western edge of the
cloud band. At the western edge, the cloudiness was
low straliform, lifting and thinning out eastward, and
becoming broken middle and upper layers over Kansas
and Oklahoma (northeastern quadrant of photograph).

The snow-covered higher elevations of the Colorado
Rockies appear north and northwest of the center-cross
fiducial mark. However, skies in that area were not
completely clear; ground observers were reporting variable
amounts of thin cirrus, largely invisible in this photo-
graph. Thicker cirrus does appear toward the southwest
corner.,

The slightly inferior quality of the lower half of the
picture is due to electronic ‘‘noise”.
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it is possible to obtain closed solutions.

1. INTRODUCTION

Numerical solutions to initial value problems defined
by linearized equations for quasi-geostrophic flow provide
useful information concerning certain meteorological prob-
lems (for examples, see [1, 2]). Information concerning
the accuracy of the numerical techniques used to obtain

such solutions would, therefore, seem to be of general
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ABSTRACT
The accuracy of a numerieal technique devised for the purpose of obtaining approximate solutions to an initial
value problem defined by linearized equations for quasi-geostrophic flow is tested in certain simple eases for which
The numerical technique is found to be extremely accurate.
The dependent variables are written
o=6(p, y)+¢' (@, ¥, p, 1), (5)
V:U(p)i—}—V' (x; Y, Dy t) (6)
and
w=w'(z,y, p, t) ™
The primes denote perturbation quantities. ¢ (p,y) is

interest.

Before proceeding with the computations described in
[1], the author tested the numerical technique used there
by applying it to certain simple cases for which it was
possible to obtain closed solutions. The present paper
has been prepared to make the results of these tests
available.

2. BASIC EQUATIONS
The model is defined by,

——><V¢ ey
¢ ST VYU —fo @)

t_a.nd
apat‘|‘VV —|—aw=0 (3)

V is the horizontal wind, k is a unit-vertical vector, ¢ is
the geopotential, {=f,"'V? ¢ is the relative vorticity, f is
the Coriolis parameter, f, is a standard value of f, » is the
individual derivative of pressure, p is pressure, and

o=0"1 ~ — 4)

which, at most, is taken to be a function of pressure alone.

the geopotential of the base state, U (p) is the mean zonal
wind, iis a unit vector pointing eastward, z is east-west
distance and y is north-south distance. From the geo-
strophic relationship,

—f %@ (8)

By the usual technique, we linearize equations (2) and
(3) to obtain

209" | rrg2 08’ 5087, 00
Vs tUVE 548 5o B3 )
%’ 0%’ dU o¢’ .
opot TV apoz dp oz T =0 (10)

Elimination of the time derivatives between equations
(9) and (10) yields

0w’ ,dU 0%’
2. ./ -
VA =2 ¥ bz St opoz (1)
We assume solutions of the form
z’z%zA(p, t) sin kz+ B(p, t) cos kx (12)
' =C(p, t) sin kx-+-D(p, t) cos kx (13)

Alternately, we may write
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2’=R, cos (kx+3,) (14)
o' =R, cos (kx+8,) (15)

where
R.=(A*4- B2 (16)
R, =(C*+-D)'~ (17)
tan 6,=A/B (18)

and

tan &§,=C/D (19)

When equations (12) and (13) are substituted into (9) and
(11) and coefficients of sin kx and cos kxz are equated, one
obtains

aA_kORB 1(% 2% (20)

S ——tcaa— () S (21)

and 620 (f0> O_ng<fo 55 aag (22)
o2 (5o (B Lyt

which are essentially the same as obtained by Wiin-
Nielsen [2]. Equations (20) to (23) differ from those
employed in {1] only to the extent that a harmonic de-
pendence on the meridional coordinate was allowed in
the previous study.

The quantity, Cy, is the Rossby wave speed.

Cr=U—(B/k?) (24)

The system of equations (20-23) may be solved numeri-
cally as an initial value problem through a simple com-
putational cycle. Given initial values of A and B, initial
values of C and D are obtained by solution of the diagnos-
tic equations (22) and (23). Equations (20) and (21) may
then be used to obtain A and B at the next time step.
The cycle may then be repeated until the required time
interval has been spanned.

3. NUMERICAL TECHNIQUES

’1‘he finite-difference grid to be applied to the vertical
coordinate is shown by table 1. A high degree of vertical
resolution was required to portray the vertical structure
of the disturbances treated in the author’s previous paper
[1]. It is possible that the relatively simple disturbances
treated in the present paper would allow the use of a
substantially coarser mesh. However, since the purpose
of the computations reported on here was merely to test
the computational procedure employed in [1], calculations
were performed only with the fine grid.

By use of the subscript, ¢, to denote properties at the
ith grid point, the diagnostic equations (22) and (23),
are approximated by

TaBLE 1.—Description of finite difference grid

Grid-Point
Index

Grid-Point
Pressure

(mb.)

Equation
Applied

[T S
e
'

vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
vorticity
omega
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968.75 | vorticity

0i+2—[2+4ai(’£%1—’)2] 0i+0i_2=4kAp<3—]f0>2 o

2BkADy

Ui—l) B'L— f02 — (Bi+l_Bi—l) (25&)

and
kEAp\? kN?
Di+2_[2+40i<—pr> ]D1+D1_2:_4kAp<70> g(U‘L’+1

_UL)A +2‘*’}Af’-" (Apsi—Aiy)

(25b)

i=3,5,7,...,31

The pressure increment, Ap, is 31.25 mb. At the even
grid points,

Dt+1+D1 1

01: Di-—

Crait Ciy
—a (26)

i=2,4,6,...,32
Boundary conditions are O,=C;=D,=D;;=0. The

prognostic equations, (20) and (21), are applied at the
even grid points in the approximate forms

A Cip—C,
i—kOR,B (f") -1( +2Ap 1>_1‘i (27a)

—kCed, (f") (Dm —D. 1) T} (27h)

1=2, 4, 6, , 32
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At the odd grid points
Ai+l+Ai—l,

o _B’I+1+Bi—1
A== B==r—= (28)
i=3,5,7, ... 31
Equations (25a) and (25b) may be written
—0i+2+a101’—0i—2=71 (29)
—Di+g+0{iDi'_Di—2='Y; (30)
i=3,5,7, ... 31
In (29) and (30)
2
0
2BkA 4k°A
Yi= Bk pg (Biy1—Biy)— kfng Uen=Uia)B: (32)
and
. 4k'A 26kA
Yi= kf 2pq (Ul—{-l i—l)Ai Bf 22)9 (Ai+l i‘l) (33)

Richtmyer [3] gives a simple method for solving the
difference equations (29) and (30). To employ this
method, we introduce the following definitions,

— 1
F - El 2 (34)
'Yz—i_Fz—"
=, —F7 (35)
/=7;+F£—2 ;
Fi_ai_Ei—Z (36)
1=3, 5, 7, ..., 31 and E,=0, F1=0, F;=0
Then, according to Richtmyer [3],
01'=E101+2+Fi (37)
DiinDi+2+F; (38)
where
7/231, 29, 27, . 3 il[ld 01 033——D33———Dl—

The prognostic equations (27a) and (27b) are solved as
follows. We write

AP (AN = A0+ [TO+TP (t+40] (39)

B@+0 (t+A) =B, (t) —{-A—; (T(t) 4T (¢4+At)]  (40)

i=2,4,6, ...32. n=1,2,3 ....

The superscript, n, denotes the nth estimate at time
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t+ At while symbols without superscripts denote the final
estimate of quantities at time ¢. At is the length of the
time step. The iterative process defined by (39) and (40)
is continued until

| AP+ (E+AL) — AP (E4AL) [<r
| B0 (448 — B (t441)| <~

(41a)
(41Db)

and

where 7 is a pre-assigned positive tolerance. Guesses are
needed forT{ (¢+At) and I'; (¢+At). These are taken as

T (t+AL)=Ty(t) (42a)
and

T® (t+A)=Ti(t) (42b)
Since the coefficients €' and D are implicit in T' and I'” and
since ¢ and D, in turn, are calculated from A and B (by
means of equations (31-38)), it is clear that ¢ and D must
be recalculated for each new value of the superscript, n.

The iterative process defined by equations (39) and (40)
may be thought of as a generalization of Milne’s [4] itera-
tive technique for the solution of a single ordinary dif-
ferential equation. It is also similar to a method recently
employed by Veronis [5]. Milne shows (again for the
case of a single ordinary differential equation) that a
simple analysis may be performed to determine whether
or not his iterative process will converge. However, in
our case, where we deal with a system of ordinary differ-
ential equations (especially in view of the fact that the
r; and I'",'® are dependent on the solutions of (29) and
(30)), convergence can be established only by calculation.
In the cases attempted, convergence was attained without
difficulty (for all computations, At=30 min., 7=107% m.).

The technique described above, together with the values
of At and 7 just given, provides extremely accurate solu-
tions to the test cases described below. It is possible that
larger time intervals and tolerances would have provided
results which would have been sufficiently accurate for
the purposes of the author’s previous paper. Indeed, it
1s possible that a simpler method of time integration would
have sufficed. However, the author is inclined to begin
with methods that provide, perhaps, a greater degree of
accuracy than is required and then to adopt less accurate
techniques only if the cost of the more accurate result is
unreasonable. Following this philosophy, the technique
described above, with the tolerance and time interval
given, was coded first. Since this program provided
results which were more than adequate at a moderate cost
(running time for a 12-hr. solution was about 4 min. on
the relatively slow and inexpensive G.E. 225 computer at
the National Hurricane Research Laboratory), no modifi-
cations to the original program were made.

Admittedly, the exclusion of additional calculations
leaves unanswered questions with regard to how closely
our solutions could have been reproduced by simpler
techniques using larger tolerances and coarser space and
time meshes. However, investigation of these problems
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at & time when we already had an accurate and economical
program would have delayed the computations for
which the program was written (those reported in [1])
and might have been more expensive than simply pro-
ceeding, as we did, with the original program.

It may be argued that, since the physical model is
rather crude, little is to be gained by obtaining numerical
solutions of more than moderate accuracy. However,
when crude numerical techniques are employed, we
frequently find it difficult to determine which aspects of
the solution are a result of the physical assumptions and
which are due to numerical approximations. For this
reason, the author is inchned to adopt numerical tech-
niques which are as accurate as can be justified by the
economics of the situation and the importance of the
physical problem.

The results of the test calculations are presented in
the following sections.

4. THE ROSSBY WAVE CASE

When U and ¢ are constants (¢>0), equations (20)-
(23) may be written

E)A ft oC

=kCrB— lch@ (43)
OB fo oD
S —kCed—s S0 (44)
20 I Bkg OB
X s0—_Fr9 98
T T (43)
2 2
2D k By aA )

~———5 D=

o fE T I
It is noted that Cr (by equation (24)) is also a constant
for this problem. If,

A(0,p)=0, B(0,p)=B,=a constant, (47)
then equations (45) and (46), together with the boundary
conditions on C'and D, can be satisfied only by the trivial
solutions

C(0,p)=D(0,p)=0 (48)

From (43), (44), (47), and (48), we find that 0A/d¢ and
OB/dt at t=0 are independent of pressure. If we now
differentiate (45) and (46) with respect to time and note
that at =0 0’B/opdt and 9?°A4/0pot sre zero, we find that
the initial values of 0C/0t and 0D/t are zero. This may
in turn be used to show that the initial values of
0?A/ot* and 0*B/of? are independent of pressure which
may then be . used to show that the initial values of
0*Cfdt? and 0*D/Ot? are zero. In the same way, it
may be shown that all time derivatives of C, D, 0A/0p,
and 0B/dp are initially zero. Hence, the motion must
be isobaric and invariant with pressure for all time.
Equations (43) and (44), therefore, reduce to
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0A/dt=FkCrB (49a)

end
OB/ot=—kCrA (49b)

In view of the initial conditions, the solution to the
problem is

A=DB; sin kCyt
B=DB; cos kCxt

(502)
(50b)

which shows that the disturbances move with constant
amplitude at the Rossby speed.

Numerical solutions were obtained for £.=2,000, 6,000,
and 10,000 km. (¢=12 hr., At=30 min., 7=10"% m.,
Fo=10"" sec.”!, B=16X10""? m.7! sec.”!, o¢=0.5 mits
units, U= 410 m. sec.”}, B;=97.4 m.). Table 2 gives
the results for the U=10 m. sec.”! case (values obtained
from the numerical solution were identical at all pressure
levels). The amplitudes are accurate to within three
significant figures and have a percentage error (to the
nearest whole percent) of zero. The phase angles, given
to the nearest whole degree, are exact at L=2,000 and
6,000 km. but are in error by 1° at L=10,000 km. In
the U=—10 m. sec.”! case (table 3), the amplitudes
are again exact to three significant figures and to the
nearest whole percent. The phase angles are exact to
the nearest whole degree.

5. ADVECTIVE MODEL WITH BAROTROPIC BASE
STATE

If ¢ is zero and U is constant, equations (20-23) become

aA__ fo o0
=k p B— 5 o7 (51)
OB fo DD
3= kO3 (52)
0C__pkg0B
o fo* op (53)
and
62D qu bA
fo (54)

If we eliminate ' between equations (51) and (53) and
also eliminate D between equations (54) and (52), we
obtain

04 0B

b_pbt:kU ) (55)
and

o'B 0A

bpbt:-—_kU_b? (56)

If we now eliminate B between equations (55) and (56),

we find
04

E (57)

<0t2+k2U2

The general solution to equation (57) is
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TapLE 2.—Comparison between the closed solution (equations (50a)
and (50b)) and the numerical solution for the Rossby wave case
(U=a constant, o=a constant, A0, p)=a constant=0, B(0, p)=a
constant=By).  Values of the parameters are, By=97.4 m.,
B=16X10"12 gec.”! m."1, fo=10"* sec.”!, ¢=0.5 mis units, U=10
m. sec.™, 1=12 hr., Al=280 min., r=10"3 m. Amplitudes (R) are
in unils of meters and are given lo three significant figures. Phase
angles (8) are given o the nearest whole degree.  Subscript N denotes
properties of the numerical solution; values without subscripts are
from the closed solution.

(k) R Ry Ry—F 8 sy sN—38
I3
2,000 97.4 97.4 0.00 —65 —65 0
6,000 ____ 97.4 97.4 0.00 —12 —12 0
10,000 .- - 97.4 97.4 0. 00 —46 —47 -1
TABLE 3.—Same as table 2 except U= —10 m. sec.”!
L(km) R Rx By—R 5 by sx—3
R
2,000 97.4 97.4 0.00 —90 —90 0
6,000 97.4 97.4 0. 00 —64 —64 0
10,000 97.4 97.4 0.00 —79 —79 0

A=F,(p) sin kUt+Fu(p) cos kUt+ G(t) (58)
Fy(p), Fy(p) and G(f) are functions of integration. If we

take A(0, p)=0 we find
Fy(p)=0 (59)
G(0)=0 (60)

By use of (58) and (59),
A=F\(p) sin kUt-+ G(2) (61)

From (55), (59-61)

B=F,(p) cos kUt+ H (1) (62)

where H(t) is a new function of integration. From (51),
(52) and the boundary conditions on C and D we find

f & <D—A—IcORB> dp=0 (63)
Jo ot
f & @—kORA) dp=0 (64)
Jo ot
From (61-64), we obtain
BEY os k%8 o (65)
2 dt
and
B cin w1+ kOG=0 (66)
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where
= 1 [P
T | Fipdp (67)
PoJo
If H is eliminated between (65) and (66), we have
d&*q . = .
W—f—kZORG:B(OR—I— U)F, sin kUt (68)
The general solution to equation (68) is
G=K, sin kCrt-+K, cos kCxt—TF, sin kUt (69)
where K, and K, are constants of integration. Since

A(0, p)=0, we have, from (60), G(0)=0 and, hence,
from (69), K,=0 so that equation (69) reduces to

G=K, sin kCrt—F, sin kUt (70)
From (65) and (70), we find
H=—F, cos kUt+K, cos kCxt (71)

By use of the notation, B(0, p)=2B, (a function of p),
we find from equations (62) and (71),

BO:Fl(P)_FH‘Kl (72)
Vertical integration of (72) yields
.EO:KI (73)
From (72) and (73)
B0=F1<P)“F1‘|‘Eo (74)

We will limit ourselves to initial conditions such that

E):O. Furthermore, we will select F,;(p) such that
F,=0. Therefore
By="Fi(p) (75)
and the solution is given by
A=B,sin kUt (76)
B=RB, cos kUt (77)

(It should be noted that the requirement B,=0 eliminates
the wave component which moves with the Rossby
speed.) Finally, we choose

Boy=Bo(2p—po) /o (78)

where By, is a constant.

We take f,=10"* sec.”!, =16X10"'2 m.™! sec.”!,
t==12 hr., U=10 m. sec.”!, Byp=97.4 m., At=30 min.,
7=10"% m. The solution for L=2,000 km. is given by
table 4. Amplitudes obtained from the numerical solu-
tion are exact to three significant figures and to the nearest
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TaBLE 4.—Comparison between the closed solution (equations (76)
and (77)), and the numerical solution for the advective model with
constant zonal wind (=0, U=a constant, A0, p)=0, B, p)
=By (@p—po)[pe). Values of the parameters are, L=2000 km,
fo=107* sec.”, f=16X 10712 m.7! sec.”, U=10 m.sec.”', Bo=97./
m., t=12 hr., At=80 min., r=10"3m. Amplitudes (R) are in
units of meters and are given to three significant figures. Phase
angles (8) are given to the mnearest whole degree. Subscript N
denoles properiies of the numerical solution; values without sub-
scripls are from the closed solution.

Pressure R Rw Rv—R 5 S Sy—8
(mb.) - :
00. 00 97.4 || P17 S U IR
31.25 91.4 91.4 0.00 258 258 0
62. 50 85.3 85.3 0.00 258 258 0
93.75 79.2 79.2 0.00 258 258 0
125. 00 73.1 73.1 0.00 258 258 0
156. 25 67.0 67.0 0.00 258 258 0
187. 50 60.9 60.9 0.00 258 258 0
218.75 5.8 54.8 0.00 258 258 0
250. 00 48.7 48.7 0.00 258 258 0
281. 25 42.6 42.6 0.00 258 258 0
312. 50 36.5 36.5 0.00 258 258 0
343.75 30.4 30.4 0.00 258 258 0
375.00 24.4 24.4 0.00 258 258 0
406. 25 18.3 18.3 0.00 258 258 0
437.50 12.2 12.2 0.00 258 258 0
468.75 6.09 6.09 0.00 258 258 0
500.00 0.00 0.00 0.00 |
531.25 6.09 6.09 0.00 78 78 0
562. 50 12.2 12.2 0.00 78 78 0
593.75 18.3 18.3 0.00 78 78 0
625. 00 24.4 24.4 0.00 78 78 0
656. 25 30.4 30.4 0.00 8 78 0
687. 50 36.5 36.5 0.00 78 78 0
718.75 42.6 42.6 0.00 7 78 0
750. 00 48.7 48.7 0.00 78 78 0
781,25 5.8 54.8 0.00 78 78 0
812. 50 60.9 60.9 0.00 78 78 0
843.75 67.0 67.0 0.00 78 78 0
875.00 73.1 73.1 0.00 78 78 0
906. 25 79.2 79.2 0.00 78 78 0
937. 50 85.3 85.3 0.00 78 78 0
968. 75 91.4 91.4 0.00 78 78 0
1000. 060 97,4 | e £ S OS] R

whole percent of error; phase angles are exact to the nearest
whole degree. Table 5 shows that the same high degree
of accuracy is achieved by the numerical solution in the
case with L=6,000 km. The calculation was repeated
with L=10,000 km. (results not shown) with equally good
results.

6. ADVECTIVE MODEL, BAROCLINICBASE STATE, =0

If we make the change of variable

P+=D[Do (79)
take ¢=0, =0 and choose
U=U,(1—px) (80)

where U, is a constant and p, is 1,000 mb., equations
(20-23) reduce to

24_ R

0B _ _ Jo* oD

o5 kU1 p*)A ©°pog Ops (82)
3 _2kplUng )

ops” I
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TaBLE 5.—Same as table 4 except L=6000 km.

Pressure R By Ev—R 4 ow on—b
(mb) R
00. 00 97.4 || 206 || oo
31.25 91.4 91.4 0.00 206- 206 0
62. 50 85.3 85.3 0.00 206 206 0
93.75 79.2 79.2 0.00 206 206 0
125.00 73.1 73.1 0.00 206 206 0
156.25 67.0 67.0 0.00 206 206 0
187. 50 60. 9 60.9 0.00 206 206 0
218.75 54.8 54.8 0. 00 206 206 0
250. 00 48,7 48.7 0. 00 206 206 0
281.25 42.6 42.6 0.00 206 206 0
312. 50 36.5 36.5 0.00 206 206 0
343.75 30.4 30.4 0.00 206 206 0
375.00 24.4 24.4 0.00 206 206 0
406. 25 i8.3 18.3 0.00 206 206 0
437. 50 12.2 12.2 0.00 206 206 0
468. 75 6.09 6.09 0.00 206 206 0
500. 00 0.00 0.00 0.00 oo el
531.25 6.09 6.09 0.00 26 26 0
562. 50 12.2 12,2 0.00 26 26 0
593.75 18.3 18.3 0.00 26 26 0
625. 00 24.4 24.4 0.00 26 26 0
656. 25 30.4 30.4 0.00 26 26 0
687. 50 36.5 36.5 0.00 26 26 0
718.75 42.6 42.6 0.00 26 26 0
750. 00 48.7 48.7 0. 00 26 26 0
781.25 54.8 54.8 0.00 26 26 0
812, 50 60.9 60.9 0.00 26 26 0
843.75 67.0 67.0 0.00 26 26 0
875.00 73.1 73.1 0. 00 26 26 0
906. 25 79.2 79.2 0. 00 26 26 0
937. 50 85.3 85.3 0.00 26 26 0
968, 75 91.4 91.4 0.00 26 26 0
1000. 00 97.4 || 26 ||
and
D 2k*p g
—7 4 (84)

op’ fo

We eliminate ¢ between equations (81) and (83) and
eliminate D between (82) and (84). This gives

0’4 OB
m—kaB-{-ka(l_P*) o (85)
and
o’B 0A ,
We now eliminate A between (85) and (86) to obtain
o'B i .
W-HC U ap*2—0 (87)
where U=Uy(1—px). From (87),
o’'B .
W::Fl(p*) sin kUt+ Fo(py) cos kU (88)
o
Fy(px) and Fy(ps) are functions of integration. If the
initial conditions are
and
B(0,p,)=By=a constant (89b)
then Fy(p,)=0. Differentiation of (86) by p, gives
0?A 1 0B
P kU optd t_—F‘ (py) cos kUL (90)
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However, because of (89a), (90) gives Ii(p,)=0. There-
fore,

d2A[op2=
22 B/op,2=0

(91)
and
(92)

which are valid for all time. Direct integration of equa-
tions (91) and (92) gives

A=S)ps+M (1)
B=G(t)p*—}-H(t)

(93)
(94)

and

where S(f), M(t), G(®) and H() are functions of integra-

tion. Substitution of (93) and (94) into (85) and (86)
gives

dS/dt=kUG+kUH (95)
and

dG/dt=—EUS—kU M (96)

From (81), (82), (95) and (96), we obtain

72 a0 ( dM
k*pog ap* kUoH
ds
+(kUOG—kU0H—E> Pe—kUGp? (97)
and
f¢ D _< dH
Fpog Ops Mg,

da

+<IcU0M—IcUOS—7t P ISP (98)

Since (' and D both vanish at p«=0 and px=1, equations
(97) and (98) may be integrated over the depth of the at-
mosphere to yield

1 1 dM 1dS
and dH  1dG
1
lcUoM—I— KOS+ 45 5= (100)

Equations (95), (96), (99), and (100) determine @, H, S,
and M to within arbitrary constants. These solutions
may then be substituted into (93) and (94) and the initial
conditions (equations (89a) and (89b)) applied to deter-
mine the arbitrary constants. The procedure, though
simple, is long and tedious and, for the sake of space, is
omitted here. The results obtained are

A= Bsin v3»t cosh »t—3(1—2p,) cos v/3v¢ sinh »t},
(101)

B=DB,[cos y3vt cosh vt-++3(1—2p,) sin V3vt sinh »¢] (102)

where

v=hkU,/(2v3) (103)

Stanley L.

Rosenthal 585

We do not contend that the solution, as given by
equations (101) and (102), is representative of the develop-
ment process in the real atmosphere nor that it is con-
sistent with the assumptions associated with the lineariza-
tion of the problem. However, the availability of this
solution does allow a rather severe test of the numerical
technique for cases in which amplification takes place.
The numerical results shown below indicate that the
numerical solution yields mtensification which is entirely
consistent with that given by the solution to the differ-
ential equations.

Table 6 compares the solutions for I.=2,000 km.,
fo=10"* sec.”! =16 X10"2 m."! sec.”!, Uy=40 m. sec.™,
By=97.4m.,{=12 hr, At=30 min. and r=10"*m. Krrors
in the amplitude are 3 m. or less and percentage errors
are no larger than 1 percent. The phase angles, at three
of the grid points, are in error by 1°. At the remaining
grid points they are exact to the nearest whole degree.
The results for L=6,000 km. are shown by table 7
Amplitudes obtained from the numerical solution are
exact to three significant figures and to the nearest whole
percent of error. The phase angles are exact to the
nearest whole degree. Table 8 shows that the results
with L=10,000 km. are equally as good.

TArLE 6.—Comparisons between the closed solution (equations (101)
and (102)) and the numerical solution for the advective model with
B=0 and with a baroclinic zonal current (e=0, U=U, (I—px),
AQ, px)= 0 B (0, px) = By=a constant). Values of the parameters
are, Li=2000 km., Bo=97.4m., fo=10"% sec.”l, Uy=40m. sec.”!,
{=12 hr. " At—80 mm r=10-3m. Amplztudes (R) are in units of
meters and are given lo three significant figures. Phase angles (3) are
given to the nearest whole degree. Subscript N denotes properties
of the numerical solution; values without subscripis are properties of
the closed solution.

Pressure R Ry By—R ) Sy Sy—95
(mb.) R
00. 00 457 | 108 ||
31.25 437 434 —0.0L 99 99 0
62. 50 417 414 —0.01 101 101 0
93.75 397 395 —0.01 103 103 0
125.00 379 376 —0.01 105 106 1
156. 25 360 358 —0.01 108 108 0
187,50 343 341 —0.0L 111 111 Q
218.75 326 325 0.00 114 114 0
250. 00 311 309 —0.01 117 117 0
281.25 296 295 0.00 121 121 0
312. 50 283 282 0.00 125 125 o
343.75 272 270 -0.01 129 129 0
375. 00 262 260 —0.01 134 134 0
406. 25 254 253 0.00 139 139 4]
437. 50 248 247 0.00 144 144 0
468.75 245 243 —0.01 150 150 0
500. 00 244 242 —0.01 155 156 1
531.25 245 243 —0.01 161 161 0
562. 50 248 247 0.00 167 167 0
593.75 254 253 0.00 172 172 0
625. 00 262 260 —0.01 177 177 0
656. 25 272 270 -0.01 182 182 0
687. 50 283 282 0.00 186 186 0
718.75 296 295 0.00 190 180 ]
750. 00 311 309 —0.01 194 194 0
781.25 326 325 0.00 197 197 0
812. 50 343 341 —0.01 200 200 0
843.75 360 358 -0.01 203 203 0
875. 00 379 376 —0.01 205 206 1
906. 25 397 395 —0.01 208 208 0
937. 50 417 414 —0.01 210 210 0
968. 75 437 434 —0,01 212 212 0
1000. 00 457 | 213 e ieca
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TABLE 7.—Same as table 6 except L=6000 km. TABLE 9.—Same as lable 6 except t=48 hr.
Pressure R Ry Ry—R 3 oy sx—3 Pressure R Ry Ry—R 5 on on—35
(nbh.) R (mb.) X102 X102 R
00. 00 144 ).l 12 - 513 el ____ 202 el
31.25 141 141 0. 14 0 489 476 203 204 1
62. 50 137 137 0.00 16 0 465 454 205 205 0
93.75 134 134 0.00 18 0 442 431 207 207 0
125. 00 131 131 0.00 20 0 420 410 209 210 1
156.25 128 128 0.00 22 0 399 388 212 212 0
187. 50 125 125 0.00 24 0 378 368 214 215 i
218.75 123 123 0.00 27 0 358 349 218 218 0
250. 00 120 120 0.00 29 0 339 330 221 221 0
281.25 118 118 0.00 32 0 322 313 225 225 0
312.50 116 116 0.00 35 0 306 298 229 229 0
343.75 115 115 0.00 37 0 291 284 233 234 1
375. 00 113 113 0.00 40 0 279 272 238 239 1
406.25 112 112 0. 00 43 0 269 262 244 244 0
437.50 112 112 0.00 46 0 262 255 250 250 0
468.75 111 111 0.00 49 0 258 251 256 256 0
500. 00 111 111 0.00 52 o 256 250 262 262 0
531.25 111 111 0.00 55 0 258 251 268 268 0
562. 50 112 112 0.00 58 4 262 255 274 274 [
893.75 112 112 0.00 61 0 269 262 280 280 0
625. 060 113 113 0.00 64 0 279 272 286 286 0
656. 25 115 115 0.00 66 0 291 284 290 291 i
687, 50 116 116 0.00 69 0 306 298 295 205 0
718.75 118 118 0.00 72 0 322 313 299 299 0
750. 00 120 120 0.00 74 0 339 330 302 303 1
781.25 123 123 0.00 i 0 358 349 306 306 0
812,50 125 125 0.00 79 0 378 368 309 309 0
843.75 128 128 0.00 82 0 399 388 312 312 0
875.00 131 131 0.00 84 0 420 410 314 315 1
906.25 134 134 0. 00 86 0 442 431 316 317 1
937. 50 137 137 0.00 88 0 . 465 454 318 319 1
968. 75 141 i41 0.00 90 0 968. 75 489 476 320 320 0
1000. 00 ) 1T (U M —— 92 e 1000. 00 S13  acoeemooo 322 |l
TasLE 8.—S8ame as table 6 except L= 10,000 km. TasLE 10.—Same as table 6 except L=6000 km. and t=48 hr.
Pressure R Ry BRy—R ) by sy—5 Pressure R Ry Ey—R 5 sy v—b
(mb.) R (mb.) R
00. 00 116 ... N PR F N 00. 00 781 48 ..
31.25 114 114 X 5 5 0 31.25 745 150 150 0
62. 50 113 113 0.00 6 6 0 62. 50 710 151 152 1
93.75 111 111 0. 00 8 8 0 93.75 6§76 153 154 1
125.00 110 110 0.00 10 10 0 125. 00 642 156 156 0
156.25 109 109 0.00 11 11 0 156. 25 610 158 158 0
187. 50 108 108 0.00 13 13 0 187. 50 579 161 161 0
218.75 107 107 0.00 15 15 0 218.75 549 164 164 0
250, 00 106 106 0.00 16 16 0 250. 00 522 167 167 0
281.25 1056 105 0.00 18 18 0 281. 25 496 171 171 0
312.50 104 104 0.00 20 20 0 312. 50 472 175 175 0
343,75 104 104 0.00 22 22 0 343.75 451 180 180 0
375.00 103 103 0.00 24 24 0 375.00 433 184 185 1
406. 25 103 103 0.00 25 25 0 406. 25 419 190 190 0
437.50 102 102 0.00 27 27 0 437. 50 408 195 195 0
468.75 102 102 0.00 29 29 0 468. 75 402 201 201 0
500. 00 102 102 0.00 31 31 0 500. 00 399 207 207 0
531.25 102 102 0.00 33 33 ] 531. 25 402 213 213 0
562. 50 102 102 0.00 35 35 0 562. 50 408 219 219 0
593.75 103 103 0.00 37 37 0 593. 75 419 225 225 0
625. 00 103 103 0.00 39 39 0 625. 00 433 230 230 0
656. 25 104 104 0.00 40 40 0 656. 25 451 235 235 0
687. 50 104 104 0.00 42 42 0 687. 50 472 239 240 1
718.75 1056 105 0. 00 44 44 g 718.75 496 244 244 [i]
750.00 106 106 0.00 46 46 0 750. 00 522 247 247 0
781.25 107 107 0. 00 48 48 0 781. 25 549 250 251 0
812.50 108 108 0.00 49 49 0 812. 50 579 254 254 0
843.75 109 109 0.00 51 51 0 843.75 610 256 257 1
875.00 110 110 0. 00 53 53 0 875. 00 642 259 259 0
906. 25 111 111 0.00 54 54 0 906. 25 676 261 261 0
937. 50 113 113 0.00 56 56 0 937. 50 710 263 263 0
968.75 114 114 0.00 57 57 ] 968. 75 745 265 265 0
1000. 00 5 U O [ 520 N (RSO R 1000. 00 781 (S P

As a final demonstration of the accuracy of the nu-
merical technique, calculations were extended to 48 hr.
with =0, B,=97.4 m., f,=10"* sec.”!, U;=40 m.
sec.”}, At=30 min. 7=10"3m. Theresults, with L=2,000
km., are given by table 9. 1t will be noted that although
amplitudes (as given by the closed solution) have in-
creased by a factor in excess of 10% the numerical solution
gives the correct value to within 2-3 percent. Phase
angles obtained from the numerical solution are correct

to within 1° or less. Table 10 gives the results with
L=6000 km. Here, the amplitudes obtained from the
numerical solution are correct to within 1-2 m.; percentage
errors, to the nearest whole percent, are zero. Phase
angles are accurate to within 1°.

7. SUMMARY

In a previous paper [1], the author proposed a numerical
scheme for obtaining solutions to an initial value problem
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defined by linearized equations for quasi-geostrophic
flow. Tests to determine the accuracy of the scheme
were conducted but were not discussed in {1]. Since
both the problem and the numerical method appear to be
of general interest, the present paper was prepared for
the purpose of making the results of these tests available.
The tests consisted of applications of the numerical
method to three simple models for which it was possible
to obtain closed solutions. The numerical solutions were
found to be remarkably good.

The first test model was one in which the mean zonal
current and the mean static stability were constant in the
vertical. The amplitude and phase angle of the geo-
potential perturbation were initially constant in the
vertical. The closed solution gives a disturbance moving
at the Rossby speed with constant amplitude and for
which the motion is isobaric and invariant with pressure
for all time. Numerical solutions were obtained out to
12 hr. with half-hour time steps for wavelengths of 2,000,
6,000, and 10,000 km. The results showed amplitudes
which were accurate to three significant figures and phase
angles which were accurate to within 1°.

In the second test case, the mean zonal current was
again barotropic; the mean static stability was zero. The
amplitude of the geopotential perturbation was initially
a linear function of pressure (zero at the 500-mb. level).
The phase of the initial geopotential perturbation was
constant above and below the 500-mb. level with the
perturbation in the upper half of the atmosphere being
180° out of phase with that in the lower troposphere.
The closed solution gave a wave moving with constant
amplitude at the speed of the basic current. Again,
numerical solutions were obtained for L=2,000, 6,000,
and 10,000 km. with half-hour time steps out to 12 hr.
For all three wavelengths, the numerical calculation gave
amplitudes which were exact to the nearest whole degree.

The third model was baroclinic with the basic zonal
current being a linear function of pressure; the mean
static stability was zero and the beta-parameter was zero.
The amplitude and phase angle of the geopotential
perturbation were initially constant with pressure. For
this case, the closed solution, of course, gave disturbances
which increased in amplitude with time. Again, numerical
solutions out to 12 hr. with half-hour time steps were
obtained for wavelengths of 2,000, 6,000, and 10,000 km.
At L=2,000 km. the amplitude increased by a factor of
2-5 over the 12-hr. period. Amplitudes obtained from
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the numerical solution were, however, correct to within
2-3 m. and had percentage errors of 1 percent or less.
Phase angles at three of the grid points were in error by
1°; at all other grid points, the numerical solution gave
phase angles which were exact to the nearest whole degree.
At L=6,000 and 10,000 km., the amplitudes were exact
to three significant figures and to the nearest whole
percent of error; phase angles were exact to the nearest
whole degree.

As a final test, numerical solutions to the baroclinic
model were extended to 48 hr. for the cases with L=2,000
and 6,000 km. At L=2,000 km. the amplitudes increased
by a factor in excess of 10? during the 48-hr. period. The
numerical solution, however, was accurate to within 2-3
percent. Phase angles were correct to within 1° At
L=6,000 km. the amplitude increased by a factor of 4-8
over the 48-hr. period. Nevertheless, the numerical
solution was accurate to within 1-2 m. and had percentage
errors, to the nearest whole percent, of zero. Phase
angles given by the numerical solution were in error by
1° at five grid points; at the remaining grid points, the
phase angles were exact to the nearest whole degree.
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